
Ted Wright
Glenn Research Center, Cleveland, Ohio

Spread and SpreadRecorder
An Architecture for Data Distribution

NASA/TM—2006-214083

January 2006

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

Ted Wright
Glenn Research Center, Cleveland, Ohio

Spread and SpreadRecorder
An Architecture for Data Distribution

NASA/TM—2006-214083

January 2006

National Aeronautics and
Space Administration

Glenn Research Center

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

Available electronically at http://gltrs.grc.nasa.gov

Contents

1 Introduction

2 The Task
2.1 High Level Design Goals .
2.2 Other Approaches .
2.3 The SpreadRecorder Approach .

3 Spread

4 SpreadRecorder
4.1 SpreadRecorder Data Formats .
4.2 SpreadRecorder Downlink .

5 Protocol Converters

6 Design Choices 1
6.1 Linux versus vxWorks . 1
6.2 Python versus C (and others) . 1
6.3 Database versus a flat file system . 1
6.4 MySQL versus SQLite . 1

1

1

4

5

7

7

1
1
2
3
3

1
3
3

6

NASA/TM—2006-214083 iii

Spread and SpreadRecorder
An Architecture for Data Distribution

Ted Wright

National Aeronautics and Space Administration

Glenn Research Center

Cleveland, Ohio 44135

A Spread Example Code 1
A.1 Connect To A Spread Server . 1
A.2 Disconnect From A Spread Server . 1
A.3 Join A Spread Channel . 1
A.4 Leave A Spread Channel . 1
A.5 Send A Message To A Spread Channel . 1
A.6 Receiving Message From A Joined Spread Channel 1

B SpreadRecorder Commands 19
B.1 Help Command . 19
B.2 Shutdown Command . 19
B.3 Add Channel Command . 19
B.4 Remove Channel Command . 20
B.5 Status Command . 20
B.6 Database Status Command . 21
B.7 Playback Command . 21
B.8 Stop Thread Command . 22

C SpreadRecorder Installation 23
C.1 Spread Installation . 23
C.2 PulseOxUSB Setup . 25
C.3 TSHES Setup . 25

5
5

5
5
5

6
6

NASA/TM—2006-214083 iv

1 Introduction

The Space Acceleration Measurement System (SAMS) project at the NASA Glenn Re-
search Center (GRC) has been measuring the microgravity environment of the space shut-
tle, the International Space Station, MIR, sounding rockets, drop towers, and aircraft since
1991. The Principal Investigator Microgravity Services (PIMS) project at NASA GRC has
been collecting, analyzing, reducing, and disseminating over 3 terabytes of collected SAMS
and other microgravity sensor data to scientists so they can understand the disturbances that
affect their microgravity science experiments. The years of experience with space flight data
generation, telemetry, operations, analysis, and distribution give the SAMS/PIMS team a
unique perspective on space data systems.

In 2005, the SAMS/PIMS team was asked to look into generalizing their data system
and combining it with the nascent medical instrumentation data systems being proposed for
ISS and beyond, specifically the Medical Computer Interface Adapter (MCIA) project. The
SpreadRecorder software is a prototype system developed by SAMS/PIMS to explore ways
of meeting the needs of both the medical and microgravity measurement communities. It is
hoped that the system is general enough to be used for many other purposes.

2 The Task

The requirements for a space medical data system and a space microgravity measurement
data system have much in common. They both must accept commands from authorized op-
erators, collect data from sensors, save the data at least long enough for it to be transmitted
to the ground, transmit the data to the ground, replay data transmissions that are not re-
ceived, archive the data in an accessible format, and distribute the data to interested clients.
The main differences are the sensors themselves (the data producers) and the clients that
make use of the data (the data consumers).

2.1 High Level Design Goals

These features, and the desire to make a general purpose system that will be useful for things
that are as yet unconceived, indicate that the system should be designed along the lines of
the end-to-end argument[EndToEnd] (also known as the fundamental design principle of
the Internet). That is, as much as possible, the distribution network should be a dumb
system that just moves bytes without understanding them, and all the intelligence should be
in the end points (the producers and consumers of data). Besides being the way to maximize
network utility, the end-to-end design fits in well with the needs for data privacy for medical
data. For maximum security, medical data should be encrypted at the source and decrypted
at the destination. Since encrypted information looks like random bytes, any data system
that depends on the details of this information will fail. The current SAMS/PIMS software
is not designed in the end-to-end manner, and much of the complication in the PIMS data

NASA/TM—2006-214083 1

processing is due to it having to extract and parse time stamp information from within the
network packets for all the different types of sensors. Fixing this flaw should be a priority
in any new design.

Another high level design requirement is that the system be flexible. The use cases in-
dicate that astronauts would like to plug in medical sensors and have them be automatically
configured. Likewise, space based displays of data should be able to be initiated or termi-
nated at any time without affecting any other users of the system. Ground based medical
personnel should be able to view ground based data without interfering with each other, and
network and communication systems permitting, ground based medical personnel want to
connect directly to flight based systems (in trauma situations). In summary, data sources
and sinks can be expected to come and go at unexpected times, and the system should be
designed so that this is not a problem. A good design for this type of system is a publish/sub-
scribe architecture. Data sources publish data by connecting to some server when they have
something to say, and data sinks subscribe to data “channels” on the server when there is
data they wish to see. Example of publish/subscribe systems are the Internet’s “Web Radio”
and “Chat Rooms”. In these cases, the radio “station” or room “name” are the “channel”,
and subscribers hear and see whatever is published on the channels they select. The current
SAMS/PIMS software is only very approximately designed as a publish/subscribe system.
In order to distribute the processing burden, it broadcasts data on the network and leaves it
up to interested clients to receive and process the data, but there is no well defined interface
for receiving only the data a client is interested in. A more well defined publish/subscribe
data interface should be part of any new design.

Another requirement is that the system must collect data in space and send that data to
the ground using the existing space communication architecture. It would be nice to have an
unlimited bandwidth, full time, two-way, TCP/IP network connection between ground and
space, but that is not the case. The nominal mode of operation for ISS based microgravity
measurement systems is that they collect their data and hand it off to an ISS supplied Rack
Interface Computer (RIC) for transmission to the ground. This is a one-way, asynchronous
transmission. There is no acknowledgment back to the data system that the data was sent or
successfully received. There can be no dependency on any particular timing of the data. In
fact, there can be no assumption that a link is even possible at any given time. Depending on
the orientation of the space station, there are different antennas available for communication
at different times, and there are significant Loss Of Signal periods. Sending a command
from the ground to a SAMS unit is even more of a problem. Commanding is normally
disabled for security reasons. In order to send a command, a request must be submitted
and a command window must be scheduled. Data can only be sent from ground to space
during an authorized command window. It is true that in the case of a medical emergency
all available bandwidth and commanding opportunities would be authorized and a direct
TCP/IP link can be established (antenna orientations permitting), but no data system can
assume that this will be its normal mode of operation.

NASA/TM—2006-214083 2

2.2 Other Approaches

There are at least two other projects that have proposed solutions to the space medical data
distribution problem. Glenn Research Center’s Project Rescue uses a proprietary publish/-
subscribe architecture called Ring Buffered Network Bus (RBNB)[RBNB] originally devel-
oped at NASA’s Dryden Flight Research Center, now licensed by Creare, Inc. RBNB is a
general purpose Java language data server with many features that go beyond the basics of
a publish/subscribe architecture. Unfortunately, RBNB, at least as used by Project Rescue,
is not designed in an end-to-end manner. The data server must know details about the data
types and sizes of the data it is distributing. RBNB requires TCP/IP network connections.

Another proposed solution for medical data distribution is the Switchboard protocol
developed by Stanford in collaboration with NASA’s Ames Research Center and Johnson
Space Center. Switchboard is a special purpose publish/subscribe system with predefined
data types (not an end-to-end model). Switchboard is relatively immature, has few imple-
mented features (no archiving, replication, time stamping, or data playback capability), and
is written in the C# language (a proprietary Microsoft version of Java), limiting its useful-
ness in embedded systems. Switchboard requires TCP/IP network connections.

2.3 The SpreadRecorder Approach

The SAMS/PIMS team at GRC has developed another potential solution to this problem
that uses a publish/subscribe architecture as well as an end-to-end model for data distribu-
tion. This approach uses an “off-the-shelf”, free (open source) C language library called
Spread[Spread] to provide the lower level publish/subscribe mechanism for data commu-
nication. Spread has bindings for several computer languages, so Spread clients are not
limited to C.

Archiving, replication, time stamping and replay of data are provided by a program
called SpreadRecorder, all without having to know the format of the data. Since the data
system does not depend of the details of the data, it works equally well for microgravity
measurements, medical data, and other data that was unanticipated when the system was im-
plemented. In addition to the publish/subscribe data transfer mechanism, SpreadRecorder
has an integrated RIC interface for downlinking data through the nominal one-way space to
ground link available on the ISS, so it can move data from space to ground without a full
bidirectional TCP/IP network connection.

The SpreadRecorder software developed by GRC consists of SpreadRecorder itself,
several auxiliary programs (ocaWatcher, ricWatcher, ricSimSim) that simulate various as-
pects of the nominal ISS space-to-ground data system, and fourteen different Protocol Con-
verters.

The SpreadRecorder system has been successfully tested with several data sources in-
cluding a SAMS TSH-ES (Triaxial Sensor Head - Ethernet) microgravity measurement
sensor, archived SAMS microgravity measurements replayed from a database, an OxyLink

NASA/TM—2006-214083 3

Pulse Oxymeter sensor with a USB serial interface (which demonstrates the sensor be-
ing automatically configured and data acquisition happening in completely a “plug-and-
play” manner), a Pulse Oxymeter connected through a remote Ethernet interface, archived
blood pressure and ECG data captured from Switchboard, low frame rate video data from
a Firewire connected DV camcorder, data collected via a wireless 802.11g connection from
the Zin Technologies BioWatch sensor, and live data captured from the GRC developed
PUMA1 and PUMA2 medical sensors over both USB and Bluetooth wireless interfaces.

SpreadRecorder has been demonstrated with several data sinks including remote net-
worked graphical data displays showing realtime and playback gravity (acceleration) mea-
surements, pulse displays, blood pressure and ECG charts, live video display, two different
ISS RIC simulators to simulate the orbit to ground downlink, and graphical display of data
on PocketPC Personal Digital Assistants linked to the system with a wireless Bluetooth
interface.

SpreadRecorder has been installed and tested on disparate computer architectures in-
cluding Dell personal computers with Intel microprocessors, Apple PowerBook and Mac
Mini computers with PowerPC microprocessors, and the Project Rescue embedded system
hardware (running on one of their Intel personality boards).

3 Spread

Spread is a messaging service for building distributed computer applications that are spread
out across networks. It is free software developed by the Johns Hopkins University Center
for Networking and Distributed Systems.

Spread implements a publish/subscribe architecture. Spread clients can send messages
to a named channel (publish), and clients that have joined that channel (subscribe) will
receive the messages. A single client can be both a producer and consumer of data, and
multiple clients can use the same channel simultaneously.

From a programmer’s perspective, Spread is extremely simple. It consists of only six
functions:

connect to a Spread server

disconnect from a Spread server

join a Spread channel

leave a Spread channel

send a message to a Spread channel

receive messages from subscribed channels

NASA/TM—2006-214083 4

Figure 1: Spread message flow

The Spread Example Code Appendix shows how these functions are called from the
Python Programming Language, which has a minimal amount of distracting superfluousity.
The Spread message flow is illustrated in Figure 1 (which does not show connect or discon-
nect, because they are not Spread messages).

Data can be converted between their native input/output formats and Spread using pro-
tocol converters. A number of protocol converters (including ones for Ethernet, USB serial,
RS232 Serial, and Bluetooth devices) are described in the Protocol Converters section.

Spread elegantly solves the problem of near real time communication between multiple
software entities that do not need to be tightly coupled to each other. However, Spread is
very simple, so there are many features that it does not provide. Spread does not provide
any kind of data queuing for clients that are not joined to a channel. It does not provide
any way of asking which channels are active. It does not provide archiving or playback of
missed messages. These features are left to be provided by a Spread client program, such
as SpreadRecorder.

4 SpreadRecorder

Archiving and playback of Spread message are accomplished using a Spread client program
called SpreadRecorder. SpreadRecorder joins channels and records all messages sent to the
channels in a database, along with a timestamp to keep track of when the message was
received. It can be instructed to play back captured messages from the database into other
Spread channels, so that spread clients can see messages that were sent when they were not
listening. To keep the database tables from growing without limit, the oldest data in excess
of a user specified number of messages is periodically purged from the database.

SpreadRecorder uses Spread messages for its user interface. It watches for commands
on a Spread channel called spreadRecorderCommand, and sends its output to a Spread
channel called spreadRecorderStatus. SpreadRecorder recognizes the following commands,
which are fully described in the SpreadRecorder Commands Appendix:

help Shows the available commands and their options

shutdown Stops the SpreadRecorder program cleanly

NASA/TM—2006-214083 5

add channel Adds a channel to the list of channels to record

remove channel Removes a channel from the list of channels being recorded

status Shows the list of channels being recorded and the list of playback threads

database status Shows the existing database tables and their statistics

playback Starts a new playback thread

stop thread Stops a playback thread

SpreadRecorder can play back data in two different formats, and has a provision for
downlinking data though a high latency network such as the one on the International Space
Station.

SpreadRecorder implementation details and design choices are described later. The
SpreadRecorder Installation Appendix collects some notes about installing the software.

4.1 SpreadRecorder Data Formats

Spread can play back message in raw or cooked formats. A Spread client can join a chan-
nel that has raw data being played back by SpreadRecorder, and it can see the archived
messages as if they were being generated now. However, there are some differences when
compared to watching live data from a sensor. The data source will appear to be Spread-
Recorder instead of the original sensor name, and the data will appear to be live, even
though it was generated some time in the past. This is probably not what most data sinks
would prefer.

A more useful format for playback data is the cooked format, which, in addition to
the message, sends the original sending channel name, the original sender name, the data
type, and the timestamp that the data first entered the system. Data sinks that work with
cooked data can do more sophisticated things with it, such as generating graphs of the data
with the correct time axis. For this reason, cooked format is the default for SpreadRecorder
playback.

SpreadRecorder itself recognizes cooked data when it sees it on a channel (by using
a particular data type for the Spread message), and treats the data differently when it is
archived. When cooked data is recorded, the original channel name, sender, data type, and
timestamp are preserved. Since SpreadRecorder can playback data to channels on other
SpreadRecorders, cooked data playback can be used to replicate a SpreadRecorder database
on a different system. This allows the system to be distributed across multiple computers
and expanded as growth is required.

NASA/TM—2006-214083 6

4.2 SpreadRecorder Downlink

SpreadRecorder has a feature that was added specifically for downlinking data from the
International Space Station (ISS). The Spread protocol requires two-way communication
between the clients and servers, making it inappropriate for high latency or essentially one
way networks such as the ISS payload space-to-ground telemetry link. This means that
except in unusual circumstances (requiring the right ISS network configuration and an au-
thorized command window), the Spread protocol will not be used to send data from on orbit
to the ground.

However, SpreadRecorder has an interface to the ISS EXPRESS Rack Interface Con-
troller (RIC) that it can be used to playback data to the ground in much the same way as it
would be played back to a Spread channel. If the name downlink is used as the destination
channel name in a playback command, the messages being played will be formated for the
RIC (split into small chunks, and prefixed with an appropriate header that includes enough
information to reassemble the original message), and sent to a RIC connection for delivery
to the ground. A provided program called RicWatcher running on the ground can reassem-
ble the messages and inject them into a ground based Spread system. Non-emergency
situations would use the RIC and have a ground based SpreadRecorder that mirrors the data
from the space based SpreadRecorder. This is illustrated in Figure 2.

In emergency situations, where a two way space to ground link is permitted, ground
based Spread clients could send commands or receive data directly from space based Spread
data sources (or watch space based SpreadRecorder playback channels directly) since they
will be essentially on the same local area network. In addition, there is a ground based
program called OcaWatcher that can connect directly to the RIC interface on the space
based SpreadRecorder to get any data sent to the downlink channel and can inject it into
a different Spread system. This avoids going through the RIC and the UDP network data
losses inherent in the RIC downlink data path.

5 Protocol Converters

Protocol converters are programs that connect the Spread system to devices or programs
that do not natively use the Spread protocol. Several Python language protocol converters
have been developed so far.

udpToSpread.py is a generic protocol handler that watches for UDP network data being
sent on a particular network port, and inserts the captured UDP packets into Spread
as Spread messages. The protocol handler is designed to be an importable module,
so that one can make a customized version by importing the file and calling the udp-
ToSpread function, passing in the port number to watch, the Spread server to connect
to, and the name of the Spread channel that should receive the data. There is also

NASA/TM—2006-214083 7

Figure 2: SpreadRecorder system data flow

NASA/TM—2006-214083 8

an optional data transformation function that can be passed in if the data needs to be
somehow manipulated before insertion into Spread.

spreadToUdp.py is a generic protocol handler that subscribes to a Spread channel, and
broadcasts all the messages sent to that channel as UDP network packets (the op-
posite of udpToSpread.py). The protocol handler is designed to be an importable
module, so that one can make a customized version by importing the file and call-
ing the spreadToUDP function, passing in the port number on which to broadcast,
the Spread server to connect to, and the name of the Spread channel that should be
joined. There is also an optional data transformation function that can be passed in if
the data needs to be somehow manipulated before being sent to the network.

tcpipToSpread.py is a generic protocol handler that watches for a TCP/IP network stream
being sent on a particular network port, breaks the stream into chunks, and inserts
the chunks into Spread as Spread messages. The protocol handler is designed to be
an importable module, so that one can make a customized version by importing the
file and calling the tcpipToSpread function, passing in the port number to watch, the
Spread server to connect to, and the name of the Spread channel that should receive
the data. There is also an optional data split function that can be passed in if the data
needs to be broken in particular places (by default it is broken into fixed size chunks).
Another option that can be passed in is the name of a TCP/IP server to contact in order
to establish the connection. By default (no server passed in), the program becomes a
server and waits for someone to establish a connection with it.

spreadToTcpip.py is a generic protocol handler that subscribes to a Spread channel, and
sends all the messages sent to that channel as a TCP/IP network stream (the opposite
of tcpipToSpread.py). The protocol handler is designed to be an importable mod-
ule, so that one can make a customized version by importing the file and calling the
spreadToTcpip function, passing in the port number on which to stream, the Spread
server to connect to, and the name of the Spread channel that should be joined. There
is also an optional data transformation function that can be passed in if the data needs
to be somehow manipulated before being sent to the network. Another option that
can be passed in is the name of a TCP/IP server to contact in order to establish the
connection. By default (no server passed in), the program becomes a server and waits
for someone to establish a connection with it.

pulseOxTcpipToSpread.py is a protocol handler designed to read data from a serial OxyLink
Pulse Oxymeter with its RS232 interface plugged into a RS232 to Ethernet hardware
converter. It imports and reuses tcpipToSpread.py .

pulseOxUsbToSpread.py is a full featured protocol handler designed to read data from a
USB OxyLink Pulse Oxymeter. This protocol handler is designed to be started au-
tomatically by the Linux operating system’s hotplug (“plug-and-play”) subsystem,

NASA/TM—2006-214083 9

so it can put itself into the background and run without user involvement (“daemo-
nize” itself). The protocol handler is automatically run whenever the OxyLink device
is inserted, and automatically stopped when the device is removed. It requires the
installation of the PySerial[pySerial] library in order to read the USB serial port.

puma1serialToSpread.py is a protocol handler for collection of data from the PUMA 1
medical device, connected directly from the device’s RS232 port to an RS232/USB
converter. This protocol handler sends a few commands to the PUMA to turn on
sensors and initiate data flow. It requires the installation of the PySerial library in
order to read the USB serial port.

puma2serialBTToSpread.py is a protocol handler for collection of data from the PUMA 2
medical device, connected from the device’s RS232 port to a Bluetooth wireless con-
verter. Another Bluetooth wireless converter receives the data, converts it to RS232,
and an RS232/USB converter converts it to USB. The PUMA devices do not use
native Bluetooth networking, so they appear to Spread as USB serial devices. This
protocol handler sends a few commands to the PUMA to turn on sensors and initiate
data flow. puma2serialBTToSpread requires the installation of the PySerial library in
order to read the USB serial port.

spreadSAMSsqlite.py is a protocol handler that reads archived SAMS II Microgravity
Measurement data from a SQLite database and plays it into a Spread channel as if it
were live measurements. It is used primarily for stress testing the system.

tshesTcpipToSpread.py is a protocol handler that reads live SAMS II TSHES Micro-
gravity Measurement data from a TSHES sensor head. It imports and reuses tcpip-
ToSpread.py, adding a custom data splitting function and the ability to daemonize
itself.

videoSource.py is a protocol handler that reads images from a file (generated by a live DV
camcorder at approximately 2 Hz), and inserts them into a Spread channel. The 2 Hz
limit is due to the simplistic nature of this program. A smarter video source could
supply full frame rate DV quality data, and the bandwidth should not be a problem
for Spread.

videoDisplayWx.py is a protocol handler that watches a Spread channel with video image
messages (such as one generated by videoSource.py), and displays those images on
the computer screen. It requires the wxPython GUI library to be installed in order to
show the images.

bluetoothSpreadServer.py is a bidirectional protocol handler that allows devices com-
municating with a wireless Bluetooth interface to participate in a Spread system. It
advertises a spreadConnector service using native Bluetooth networking (not serial

NASA/TM—2006-214083 10

port emulation), that allows connected devices to join and leave Spread channels
and send and receive Spread messages. It uses the cooked data format to preserve
things like Spread channel name and Spread sender during its data transfers. blue-
toothSpreadServer.py requires the pyBlueZ[PyBlueZ] Python interface module for
the BlueZ Bluetooth protocol stack, so it is unfortunately Linux specific.

spreadClient.py is a generic Graphical User Interface (GUI) to Spread systems (similar to
the text based spuser program that comes with Spread). It is not exactly a protocol
converter (unless text is considered a protocol), but it does recognize the cooked
message format used by SpreadRecorder and displays the decoded original channel
name, sender, time stamp and type extracted from cooked messages. It remembers
joined channels and sent messages so that they only need to be entered once, and
it comes pre-configured with SpreadRecorder’s channels so that the user does not
have to type long names like spreadRecorderCommand. The GUI is built using the
PyGTK2 toolkit, so PyGTK2 and GTK2 must be installed in order to run the program.

6 Design Choices

This section documents some of the design choices and trade-offs made during the Spread-
Recorder design and implementation.

6.1 Linux versus vxWorks

The real time operating system VxWorks was originally proposed as the target execution
environment for the combined redesigned SAMS Control Unit and the Medical Computer
Interface Adapter. However, a careful review of the MCIA requirements revealed no hard
real time requirements. The current SAMS Interim Control Unit has been running for years
on the (non-realtime) NetBSD Unix operating system, so it does not have any hard real time
requirements.

Some thought was given to using a Real Time Operating System (RTOS) “just in case”,
but after contacting the GRC VxWorks software development experts, it was decided that
that would incur too many penalties:

• Using a RTOS typically increases development cost and schedule by a factor of 3

• Commercial RTOS are expensive, VxWorks is typically 20–40 thousand dollars for
one development system. Developers are more productive if they do not have to share
some centralized system.

• Developing hard real time code is difficult. To avoid deadlocks and priority inver-
sions, compromises are usually made to simplify the code (single thread of execu-
tion, one process, no memory protection, throwing away data that is not arriving fast

NASA/TM—2006-214083 11

enough, etc.). These compromises increase the fatality of bugs and make adding
future functionality harder.

• Ethernet is inherently non-deterministic, and cannot be done in a hard real time man-
ner. Much of the code in this project depends on Ethernet and is inherently incom-
patible with hard real time constraints.

• Hard real time means that the system will die if a deadline is exceed. Soft Real
Time means the system will continue in a degraded manner (maybe losing data) if
a deadline is exceeded. For SAMS and MCIA purposes, losing data is preferable to
aborting the program.

There is nothing about SpreadRecorder that is particularly hardware or operating system
dependent. Some of the protocol converters are operating system dependent, but only be-
cause there is no common cross-platform way of implementing “plug-and-play” for things
like USB devices. Where ever possible, cross-platform and cross-architecture languages
and techniques were incorporated into SpreadRecorder. There are emerging standards for
the “plug-and-play” configuration of network devices (such as Zeroconf/Rendezvous), and
they should be considered for future development of data sources and sinks.

The Linux operating system was chosen for its reliability, cost, and wealth of software
development tools. Red Hat’s Fedora Core 4 distribution of Linux was chosen because of
its support for both the Intel and PowerPC architectures, and because the PIMS developers
were familiar with it from using it on the PIMS analysis cluster.

6.2 Python versus C (and others)

For SpreadRecorder to achieve maximum performance on a small embedded system, it
should be written in the C programming language. C is so small and fast, it has been
called “portable assembly language”. However, it is not ideal for prototyping. Due to
the constrained schedule and budget of this project (“months” and “none”, respectively), a
higher level language was required. It might be worthwhile to rewrite SpreadRecorder in
C someday, but at this stage that would be a very premature optimization. Additionally,
benchmarks may show that this system is I/O bound, which would mean there would be no
speed benefit from such a rewrite.

The Python language is very high level, is portable, provides automatic memory man-
agement, and allows interactive experimenting with code. It is roughly an order of mag-
nitude more dense than C, and has a correspondingly shorter development cycle. It is a
strongly but dynamically typed language, so no development time needs to be spent speci-
fying data types for every variable just to make the compiler happy. Python’s two common
high level data types (Lists and Dictionaries) make expressing many algorithms very sim-
ple. Python has been called “executable pseudo-code”. For these rapid prototyping reasons,
SpreadRecorder and all the protocol converters were written in Python.

NASA/TM—2006-214083 12

Java provides automatic memory management and portability, but does not have most
of the other benefits of Python. Java and Python are both byte compiled and run on virtual
machines, so they have similar performance (significantly slower than C). Proprietary single
operating system single architecture languages such as C# were not even considered.

6.3 Database versus a flat file system

The SAMS Control Unit currently stores all the measurements it receives in a circular buffer
of fixed files. This is simple and fast. On the other hand, a home-brewed circular buffer
does not lend itself to easy querying for data playback. When data is played back, someone
will almost always want to limit the playback to a specific channel and time span. Databases
are optimized for queries like that.

In addition, there can be more than one way a client may want to see the data. PIMS
sometimes wants to see every recorded data item in the order it was received (for status
messages). Sometimes PIMS wants to see only the most recently downloaded value for
data with the same time stamp (to avoid duplicates with multiple data downlinks with over-
lapping time spans). Because databases make extracting only the desired data easier, it was
decided that they were worth the added complexity.

6.4 MySQL versus SQLite

Given that a database is going to be used by SpreadRecorder, a particular implementation
must be chosen. PIMS uses the MySQL[MySQL] database for their data collection. Be-
sides being fast and reliable, there was already existing PIMS code that worked around
MySQL’s known quirks. However, MySQL is almost too heavyweight for a small embed-
ded system. It requires some initial configuration and a server process that is always running
in the background.

A C library based database such as SQLite[SQLite] would be much more lightweight
and suitable for small embedded systems. This system requires no setup or other processes
running, and it stores its data in regular files. SpreadRecorder does not use any complicated
SQL procedures, so SQLite’s features are adequate. Performance is, in some cases, even
better than MySQL. SQLite looked like an obvious choice.

Despite concentrating all database access in one function to ease interfacing and using
the supposedly standard SQL language for queries, it turns out that switching from one
database to another is not very transparent. Databases apparently make a lot of underlying
assumptions about how they are going to be used. An early version of SpreadRecorder was
written using SQLite, but it could not be made to run reliably for periods of more than a few
days. After wasting a few weeks trying to eliminate all the bugs, development of Spread-
Recorder was switched back to MySQL, which was heavy, but ran with SpreadRecorder
for months at a time processing billions of records without a fault. When the time comes to
optimize the system, this issue should be revisited.

NASA/TM—2006-214083 13

Appendix A Spread Example Code

Spread is implemented as a portable library written in the C programming language. It has
bindings[Spread bindings] available that allow it to be called from the Python programming
language. Python will be used for code examples, and is shown inside boxes for clarity.
Other languages have a similar interface, but probably have more stuff obscuring the Spread
calls.

The Spread module must be imported to make the Spread functions available.

from spread import ∗

A.1 Connect To A Spread Server

By default, the connect function connects to a Spread server running on ‘localhost’. You
can pass ‘port@host’ to the function to get a connection to a different server. The variable
mbox is just a name that will be used to refer to the connection.

mbox = connect()
print ’connected as : ’ , mbox.private_group

A.2 Disconnect From A Spread Server

The disconnect function is the opposite of connect. It cleanly shuts down the connection to
Spread.

mbox.disconnect()

A.3 Join A Spread Channel

If you join a channel, you are telling Spread that you want to receive messages sent to that
channel. After joining, you must call receive often enough so that Spread does not queue up
too many outstanding messages for you (1000 is the default), or else Spread will disconnect
you. The name of the channel you wish to join is passed to this function.

mbox.join(’ spreadtest ’)

A.4 Leave A Spread Channel

The leave function is the opposite of join. It tells Spread not to send you any more messages
for that channel. The name of the channel you wish to leave is passed to this function.

mbox.leave(’ spreadtest ’)

NASA/TM—2006-214083 15

A.5 Send A Message To A Spread Channel

Sending a message to a channel is done using the multicast function. You do not have to
join a channel in order to send messages to it. Passed into this function are: the message
type (a constant indicating ‘safe message’, which is the only type of Spread message used
by SpreadRecorder), the channel name, and the message itself.

mbox.multicast (SAFE_MESS, ’spreadtest’, ’Hello World’)

A.6 Receiving Message From A Joined Spread Channel

Theoretically, a message is received by simply calling the receive function.

m=mbox.receive()

However, there are complications. The receive function is a blocking call, which means
if you call it when there are no messages to receive, your thread of execution will be sus-
pended until a message arrives. Unless that behavior is what you want, it is best to only call
receive when a message has already arrived.

Spread provides a poll function for checking if a message has arrived, but the docu-
mentation suggests that it not be used because it gives no indication that messages are not
ready because the network connection was terminated. A better way to check for messages
is to use the standard Unix select function, which has a Python implementation even on
non-Unix systems. The select function will throw an exception if the network connection
is unexpectedly terminated.

The receive function blocks if it is called too often, but it has another problem if it is
not called often enough. Spread will only queue up a certain number of messages for a
client before it decides that the client has died and the connection to the client should be
destroyed. If a client program subscribes to a Spread channel and then does not call receive
often enough, it will be disconnected. For this reason, when processing Spread messages,
it is a good idea to keep calling receive and handling the messages in a loop for as long as
messages are available. When there are no messages left to process, then the program can
go on to other duties.

The last complication is that there are actually two types of Spread messages that can
be returned by the call to receive. In addition to the regular messages that a client is expect-
ing, there will also be membership messages that will appear when clients join and leave
subscribed channels. Most clients will want to ignore these membership messages, which
can be recognized by checking the message type.

In a reality, there is more to receiving than just calling receive.

NASA/TM—2006-214083 16

while r :
m=mbox.receive()
that is all as far as receiving is concerned
now display what was received :
if isinstance (m, RegularMsgType):

print ’Regular Message sender: ’ , m.sender
print ’ groups: ’ , m.groups
print ’ type : ’ , m.msg_type
print ’ length : ’ , len (m.message)
print ’ message:’ , m.message

elif isinstance (m, MembershipMsgType):
print ’Membership Message reason:’, m.reason
print ’ group:’ , m.group
print ’ members:’, m.members
print ’ extra : ’ , m.extra

check if more message are ready
r , w, x = select . select ([mbox.fileno ()],[],[],0)

import select
timeout=0 in select is equivalent to poll
r , w, x = select . select ([mbox.fileno ()],[],[],0)

_

NASA/TM—2006-214083 17

Appendix B SpreadRecorder Commands

SpreadRecorder uses Spread messages for its user interface. It watches for commands on
a Spread channel called spreadRecorderCommand, and sends its output to a Spread chan-
nel called spreadRecorderStatus. Any Spread client can send a command to the spread-
RecorderCommand channel, and any client can join the spreadRecorderStatus channel to
see messages from SpreadRecorder.

Commands are text based so that they can be easily remembered and typed.

B.1 Help Command

Help simply lists all of the command recognized by SpreadRecorder, along with the default
values of any options the command will recognize.

There are no optional parameters for the help command.

help

B.2 Shutdown Command

The shutdown command cleanly stops the SpreadRecorder program. Clients should nor-
mally avoid doing this.

The list of channels that are being recorded is saved when SpreadRecorder shuts down,
and automatically restored when it starts up again. However, the list of active playback
threads is not saved or restored.

There are no optional parameters for the shutdown command.

shutdown

B.3 Add Channel Command

The add channel command adds the given channel name to the list of channels that Spread-
Recorder will archive. SpreadRecorder will create a database table to hold the messages
for the added channel (if it does not already exist), join the Spread channel, and write every
message it receives from that channel to the table.

In order to keep the tables from growing until disk space is exhausted, the oldest mes-
sages in excess of a table specific limit are periodically deleted from the table. The default
limit is 50000 messages, but may be changed when the channel is added by supplying a
limit option.

The name of the channel to add is a required parameter for the add channel command.
An optional parameter is limit.

add channel channelName [limit=100000]

NASA/TM—2006-214083 19

B.4 Remove Channel Command

The remove channel command removes the given channel name from the list of chan-
nels that SpreadRecorder will archive. SpreadRecorder will leave the spread channel. The
database table associated with the channel is not removed.

The name of the channel to remove is a required parameter for the remove channel
command.

remove channel channelName

B.5 Status Command

The status command displays the current status of SpreadRecorder. It shows the number of
messages that it has seen but not yet recorded, the total number of messages recorded, and
the number of messages waiting for pickup in the downlink queue.

The next section of the status output shows a list of all the channels it is currently
watching, along with the database size limit for each channel.

The last section shows a list of all currently running threads. Each playback thread is
listed with a name, and a list of the parameters that were given to start the playback (to help
tell them apart). The name is used by the stop thread command.

The status command has no required parameters. It can optionally be given a channel
name to send its results to instead of sending them to the default status output channel
(spreadRecorderStatus). This option is intended to help programs that poll for status to
keep their information separate.

status [optionalOutputChannelName]

Here is an example of the status command’s output as it would appear in the spread-
RecorderStatus channel:

status command received from #r2331−12#wanda
messageQueue has 0 unprocessed messages, 312502 processed

ricQueue has 0 unprocessed messages
recording 8 channels :

channel ECG (database limit 50000)
channel PulseOxUSB (database limit 50000)
channel SAMS_II_121f02 (database limit 100000)
channel SAMS_II_121f05 (database limit 50000)
channel counter (database limit 50000)
channel spreadRecorderCommand (database limit 50000)
channel spreadRecorderStatus (database limit 50000)
channel tshes01 (database limit 50000)

active threads [’SpreadRecorder’, ’Thread−1’, ’DownlinkConnector’, ’ProcessQueue’,
’DatabaseReaper’]

threadName Thread−1: playback PulseOxUSB POpb rate=1 formatted=0 keepGoing=loop

NASA/TM—2006-214083 20

B.6 Database Status Command

The database status command displays the current status of the database tables being used
by SpreadRecorder. This command may take some time to execute, because it examines
and collects statistics for all the tables in the SpreadRecorder database that match Spread-
Recorder’s table layout (even if the channel is not currently being recorded).

For each table, database status shows the table name, the time stamps of the oldest and
newest messages in the table, and the number of messages in the table.

The time stamps are represented as floating point numbers that are “Unix time” (the
number of seconds since 1970) plus the fraction of a second represented as digits after the
decimal point. The SpreadRecorder database format also has a serial number field that is
used to keep messages ordered even if they have the same time stamps, but this is transparent
to users.

The database status command has no required parameters. It can optionally be given a
channel name to send its results to instead of sending them to the default database status
output channel (spreadRecorderStatus). This is intended to help programs that poll for
status to keep their information separate.

database status [optionalOutputChannelName]

Here is an example of the database status command’s output as it would appear in the
spreadRecorderStatus channel:

database status command received from #r2331−12#wanda
ECG 1120217539.31 1120664175.98 7836
PulseOxUSB 1125580368.45 1129829599.47 2600
SAMS_II_121f02 1121447707.46 1125662553.25 100000
SAMS_II_121f05 1120217539.86 1120664175.12 504
SoundData None None 0
counter 1124202099.84 1124203102.77 50000
spreadRecorderCommand 1120664842.88 1131044442.51 1638
spreadRecorderStatus 1120664141.19 1131044442.51 1836
tshes01 1120217539.34 1120664175.94 571

B.7 Playback Command

The playback command reads archived messages from the database, and sends them to a
given Spread channel (or as a special case, to the downlink queue). There are many optional
parameters to change the default playback behavior.

The name of the source channel to play back is a required parameter for the playback
command, as well as the name of the destination channel where the messages will be sent.
The destination channel can optionally have a network port and host name appended to it,
separated by ‘@’ characters, for playback to a separate Spread system running on another
computer.

NASA/TM—2006-214083 21

Optional parameters startTime and stopTime can be used to limit the range of data to
be played back. Time is specified as “Unix time”: the number of seconds since January 1,
1970. You can use now as a shortcut for the current time.

The optional rate parameters sets the number of messages per second to play back. The
default is 50. It is unrelated to the rate that the messages arrived in the system.

The optional formatted parameter determine whether to play back raw messages (for-
matted=0), or cooked messages (formatted=1). Cooked messages are the default.

The optional keepGoing parameter determines what will happen when all the data has
been played back. If left at its default value of 0, the playback thread will terminate. If it
is set to 1 (keepGoing=1), the thread will stay alive and wait for more data to arrive, which
will be played back immediately. If it is set to loop (keepGoing=loop), it will start over at
the beginning of the database table and repeat (this is useful mostly for testing purposes).

Another optional parameter is reconnect, which will try to reestablish a connection to a
remote destination channel if the connection is lost (this defaults to 1, which means it will
try to reconnect).

The optional mergeTimestamps parameter determines what will happen if multiple mes-
sages have the same time stamp. When left at the default value of 0, all messages with the
same timestamp will be played back in the order they were received. If mergeTimestamps
is set to 1, only the most recently received message with a particular time stamp will be
played. This is useful if you want more recent data to replace older data, rather than add to
it.

playback sourceChannelName destinationChannelName[@Port@Host]
[reconnect=1] [rate =50] [formatted=1] [mergeTimestamps=0]
[keepGoing=0] [stopTime=9999999999.0] [startTime=0.0]

B.8 Stop Thread Command

The stop thread command stops a thread that was started with the playback command.
When the playback command is issued, it starts a separate thread of execution to do

the playback, and it assigns a name to the thread. Depending on the options issued to the
playback command, the thread may not terminate on its own. These threads can only be
terminated by calling the stop thread command with their name. Names of threads may be
found using the status command.

The name of the thread to stop is a required parameter for the stop thread command.
Playback thread names are automatically generated, and will normally look something like
Thread-22.

stop thread threadName

NASA/TM—2006-214083 22

Appendix C SpreadRecorder Installation

Some of these installation instructions are specific to the environment used at the NASA
GRC, but similar procedures should work elsewhere. The GRC Spread installation uses
the Fedora Core 4 Linux operating system running on computers with Intel and PowerPC
microprocessors.

C.1 Spread Installation

Both Spread and the Spread binding for Python can be installed on Linux using Red Hat
Package Manager (RPM) files. Install the binary RPMs appropriate for your architecture
with the rpm -Uvh ... command. These commands must be issued from a root shell.

The RPM files are available from:
http://parrot.grc.nasa.gov/linux/fedoraCore-4/updates/local or
http://parrot.grc.nasa.gov/linux/fedoraCore-4/ppc/updates/local

For the Fedora Core 4 Intel architecture you need:

• spread-3.17.3-3.i386.rpm

• spread-devel-3.17.3-3.i386.rpm

• SpreadModule-1.5-1.i386.rpm

For the Fedora Core 4 PowerPC architecture you need:

• spread-3.17.3-3.ppc.rpm

• spread-devel-3.17.3-3.ppc.rpm

• SpreadModule-1.5-1.ppc.rpm

Source RPMs can be used to generate binary RPMs for other distributions and architec-
tures (rebuild them with the rpm –rebuild ... command):

• spread-3.17.3-3.src.rpm

• SpreadModule-1.5-1.src.rpm

After installing the Spread RPMs, the /etc/spread.conf file must be edited to include the
IP address and network port of the Spread server. The localhost entry must be commented
out. It should look like this:

NASA/TM—2006-214083 23

http://parrot.grc.nasa.gov/linux/fedoraCore-4/updates/local
http://parrot.grc.nasa.gov/linux/fedoraCore-4/ppc/updates/local

#Spread_Segment 127.0.0.255:4803 {
localhost 127.0.0.1
#}

Spread_Segment 139.88.79.255:4803 {
wanda 139.88.79.81

}

Edit the lines in the SpreadRecorder settings.py file to reflect your Spread server name
and server port (as specified in /etc/spread.conf), and MySQL host.

Next, the Spread server must be turned on:

service spread start
chkconfig spread on

SpreadRecorder uses an SQL database. In theory, switching to different databases
should be easy. Database access is all done through one function, which submits “standard”
SQL commands to the database and returns the results. In practice, the SQL required for
different databases is not very standard, and different databases make different assumptions
about how things like transactions are handled. SpreadRecorder currently works with the
MySQL database, which should be set up on the same computer running SpreadRecorder
for best performance.

Whatever database is used will require bindings to the Python language. SpreadRecorder
currently uses MySQLdb, which must be installed. MySQLdb comes with Fedora Core 4
Linux, but is not installed by default. If your computer is configured to access the Internet
(including any needed HTTP proxy environment variables), then MySQLdb can be installed
by doing:

yum install MySQL−python

MySQL needs to be turned on and the empty SpreadRecorder database must be created:

service mysqld start
chkconfig mysqld on
mysql −e "create database spreadRecorder"

Reading serial and USB ports requires setting things like baud rates to match the sensor
device. Protocol handlers written in Python can make use of the pySerial module to make
that easy. This is required for the pulseOxTcpipToSpread.py protocol handler.

PySerial is installed using the standard Python distutils method. Download the source
file pyserial-2.2.zip, then:

unzip pyserial −2.2.zip
cd pyserial −2.2
python setup .py install

NASA/TM—2006-214083 24

The Spread system should now be ready to go. System configuration is finished, so you
can now leave the root shell and work with Spread using a regular user ID.

You can use either the GUI based spreadClient program or the text based spuser pro-
gram to send Spread messages and join Spread channels. Join the spreadRecorderStatus
channel to see messages from SpreadRecorder:

spuser −r −s 4803@spread.server.com

SpreadRecorder is not yet written as a daemon, so just start it in a terminal window:

./ spreadRecorderMysql.py

The Unix screen utility is useful for running programs in terminal windows like this
while giving you the ability to disconnect from the computer and resume later (without
stopping the running program).

C.2 PulseOxUSB Setup

For the OxyLink Pulse Oxymeter to operate as a plug-and-play device on Linux, edit the
file /etc/hotplug/usb.usermap and add a line that says:

pulseOxUSB 0x0003 0x0403 0x6001 0x0000 0x0000 0x00 0x00 0x00\
0x00 0x00 0x00 0x00000000

This will cause the pulseOxUSB script to be called whenever the device is inserted
or removed. Copy SpreadRecorder’s pulseOxUSB script to the /etc/hotplug/usb directory
so that it will be found, and edit it to make sure it references the correct location of the
pulseOxUsbToSpread.py file.

The pulseOxUsbToSpread.py is a full featured Unix daemon program, that will start
and put itself in the background so that it can run without anyone being logged in. All of
the protocol handlers (and SpreadRecorder itself) should eventually be modified this way,
given more development time.

Data should start flowing on the PulseOxUSB Spread channel a few seconds after the
device is plugged in. Be sure to send a message (one time) to SpreadRecorder on the spread-
RecorderCommand channel telling it to record the PulseOxUSB Spread channel. This can
be done from the command line:

./ sendSrCommand.py 4803@spread.server.com add channel PulseOxUSB

C.3 TSHES Setup

The SAMS TSH-ES acceleration sensor must be configured with an IP address (unless you
want to accept its default). The procedure for doing this is:

NASA/TM—2006-214083 25

1. Plug in the power for the TSH. It will start up with an IP address of 10.11.240.1XX,
where XX is the serial number of the TSH.

2. Temporarily configure a computer so that it is on the 10.11.240/24 subnet (e.g., with
an IP address of 10.11.240.100). Plug the computer into a hub with the TSH.

3. From the temporary computer, telnet to 10.11.240.1XX, and log in (user=root, pass-
word=root)

4. Run the command ifconfig eth0 139.88.79.242 to give the TSH the new IP address
(the new address is 139.88.79.242, in this example).

5. The TSH is now waiting for connections on the new address (and the telnet con-
nection will appear to be hung). Without powering-off the TSH, you can move its
network cable to a different hub, if necessary.

Edit the last line of tshesTcpipToSpread.py to reflect the IP address and port number of
the TSH, or else pass the IP address on the command line.

The tshesTcpipToSpread.py protocol handler can be run as a daemon, but it is not started
automatically. To start it as a daemon, run:

./ tshesTcpipToSpread.py daemonize=start

Alternatively, just start it running in a terminal window:

./ tshesTcpipToSpread.py

Data should start flowing on the es01 Spread channel. Be sure to send a message (one
time) to SpreadRecorder on the spreadRecorderCommand channel telling it to record the
es01 Spread channel. This can be done from the command line:

./ sendSrCommand.py 4803@spread.server.com add channel es01

NASA/TM—2006-214083 26

References

[EndToEnd] End-to-end arguments in system design. Jerome H. Saltzer, David P.
Reed, and David D. Clark. ACM Transactions on Computer Systems
2, 4 (November 1984) pages 277-288. An earlier version appeared in
the Second International Conference on Distributed Computing Sys-
tems (April, 1981) pages 509-512.
Online at: http://web.mit.edu/Saltzer/www/publications/
endtoend/endtoend.pdf

[RBNB] Ring Buffered Network Bus. Lawrence C. Freudinger (Dryden Flight
Research Center) and Matthew J. Miller, Ian A. Brown, and William
R. Baschnagel (Creare, Inc.)
Online at: urlhttp://outlet.creare.com/rbnb/WP/WebWP/rbnbwp.html

[Spread] The Spread Toolkit. Center for Networking and Distributed Systems
(CNDS) at Johns Hopkins University.
Online at http://www.spread.org

[Spread bindings] Spread Toolkit bindings for the Python Programming Language.
Online at http://www.zope.org/Members/tim_one/spread

[MySQL] MySQL Database.
Online at http://www.mysql.com

[SQLite] SQLite Database.
Online at http://www.sqlite.org

[MySQL bindings] MySQL Database bindings for the Python Programming Language.
Online at http://sourceforge.net/projects/mysql-python

[pySerial] pySerial serial port support for the Python Programming Language.
Online at http://pyserial.sourceforge.net

[PyBlueZ] BlueZ Linux Bluetooth support for the Python Programming Language.
Online at http://org.csail.mit.edu/pybluez

NASA/TM—2006-214083 27

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf
http://www.spread.org
http://www.zope.org/Members/tim_one/spread
http://www.mysql.com
http://www.sqlite.org
http://sourceforge.net/projects/mysql-python
http://pyserial.sourceforge.net
http://org.csail.mit.edu/pybluez

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

Available electronically at http://gltrs.grc.nasa.gov

January 2006

NASA TM—2006-214083

E–15420

WBS 825080.08.02

33

Spread and SpreadRecorder
An Architecture for Data Distribution

Ted Wright

Distributed processing; Client server systems; Computer systems design;
Computer networks

Unclassified -Unlimited
Subject Category: 62

Responsible person, Ted Wright, email: Theodore.W.Wright@nasa.gov, organization code PTH, 216–433–5341.

The Space Acceleration Measurement System (SAMS) project at the NASA Glenn Research Center (GRC) has been
measuring the microgravity environment of the space shuttle, the International Space Station, MIR, sounding rockets,
drop towers, and aircraft since 1991. The Principle Investigator Microgravity Services (PIMS) project at NASA GRC has
been collecting, analyzing, reducing, and disseminating over 3 terabytes of collected SAMS and other microgravity
sensor data to scientists so they can understand the disturbances that affect their microgravity science experiments. The
years of experience with space flight data generation, telemetry, operations, analysis, and distribution give the SAMS/
PIMS team a unique perspective on space data systems. In 2005, the SAMS/PIMS team was asked to look into generaliz-
ing their data system and combining it with the nascent medical instrumentation data systems being proposed for ISS
and beyond, specifically the Medical Computer Interface Adapter (MCIA) project. The SpreadRecorder software is a
prototype system developed by SAMS/PIMS to explore ways of meeting the needs of both the medical and microgravity
measurement communities. It is hoped that the system is general enough to be used for many other purposes.

	Introduction
	The Task
	High Level Design Goals
	Other Approaches
	The SpreadRecorder Approach

	Spread
	SpreadRecorder
	SpreadRecorder Data Formats
	SpreadRecorder Downlink

	Protocol Converters
	Design Choices
	Linux versus vxWorks
	Python versus C (and others)
	Database versus a flat file system
	MySQL versus SQLite

	Spread Example Code
	Connect To A Spread Server
	Disconnect From A Spread Server
	Join A Spread Channel
	Leave A Spread Channel
	Send A Message To A Spread Channel
	Receiving Message From A Joined Spread Channel

	SpreadRecorder Commands
	Help Command
	Shutdown Command
	Add Channel Command
	Remove Channel Command
	Status Command
	Database Status Command
	Playback Command
	Stop Thread Command

	SpreadRecorder Installation
	Spread Installation
	PulseOxUSB Setup
	TSHES Setup

